Para realizarlo utilizamos los datos … R4 2lτ τ= G θ θ= 2 l πGR 4 2(0,4 )(0,049) θ= = 2,08 x10-4 9 −2 π (48,0 × 10 )(0,5 × 10 ) π B=− radianes Ejemplo 45. ... A continuacion esta … P Lmite de proporcionalidad … Para que el hilo se rompa, su peso ha de ser por lo menos de 108A N, siendo A la sección. F ⇒ A F = St A = (0,425 x 107)(0,52) St = La deformación es 23 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad φ= δ = l Hugo Medina Guzmán rθ l El esfuerzo cortante es S t = Gφ = Grθ l Como el esfuerzo cortante es la fuerza tangencial por unidad de área, multiplicándolo por el área de la sección transversal de la Capa, 2 π rdr, nos dará la fuerza tangencial dF sobre la base de la Capa θ 2 ⎛ Grθ ⎞ dF = S t dA = ⎜ ⎟(2πrdr ) = 2πG r dr l ⎝ l ⎠ El torque sobre la base de la Capa cilíndrica es θ θ ⎛ ⎞ dτ = rdF = r ⎜ 2πG r 2 dr ⎟ = 2πG r 3 dr l l ⎠ ⎝ Integrando de 0 a R, el torque total sobre la base del cilindro es τ= π 2 G R4 θ l π G Para la varilla de 100 cm y de 80 cm respectivamente son: ⎛ 32 F ⎞⎛⎜ l 1 ⎞⎟ ⎛ 32 F ⎞⎛ l 2 ⎞ ⎟⎜ 3 ⎟ Y θ 2 = ⎜ ⎟⎜⎜ 3 ⎟⎟ ⎝ πG ⎠⎝ D2 ⎠ ⎝ πG ⎠⎝ D1 ⎠ θ1 = ⎜ De aquí De estas últimas obtenemos: 2τl G= πR 4θ ⎛l θ 2 = ⎜⎜ 2 ⎝ l1 O sea, para determinar C bastará con medir el ángulo θ que se produce al aplicar el torque M. ⎞⎛ D1 ⎟⎟⎜⎜ ⎠⎝ D2 3 3 ⎞ ⎛ 80 ⎞⎛ 1 ⎞ ⎟⎟ θ1 = ⎜ ⎟⎜ ⎟ 1º ⎝ 100 ⎠⎝ 2 ⎠ ⎠ = 0,1º Ejemplo 44. Una cuerda de nylon se alarga 1.10 m sometida al peso de una alpinista de 65.0 kg. Los ortodoncistas usan alambres de bajo módulo de Young y alto límite elástico para corregir 2 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán la posición de los dientes mediante arcos tensores. a) 0,062 %, b) ρ = 1,105 g/cm3 34. Calcular: Solución. Una columna de hormigón armado se comprime con una fuerza P. Considerando que el módulo do Young del hormigón Yha, es 1/10 del de hierro Yh y que el área de la sección transversal del hierro es 1/20 de la del hormigón armado, encontrar qué parte de la carga recae sobre el hormigón. [email protected] a) Δd == −2,625 × 10 − 4 , d0 b) Δd = −4,2 × 10 −4 cm −4 c) Δh = −2,625 × 10 cm 37. a) Demostrar que el coeficiente de Poisson viene dado por σ= 3B. Se cuelga una viga de 2000 kg de dos cables de la misma sección, uno de aluminio y otro de acero. La deformación del lado horizontal ax es: Δax 400 200 = +σ = 1 × 10− 4 a Y Y ΔV S S = [1 − 2(0,0)] = V Y Y Para el caucho, con un valor de 0,5: (1) aproximado a ΔV S = [1 − 2(0,5)] = 0,0 V Y La deformación del lado horizontal a y es: Δa y 200 400 =− −σ = −0,6 × 10− 4 a Y Y σ (2) Ejemplo 34. ¿En un resorte? Deformación de l: - Propia: Δl 1 p =− l Y ΔV Δl Δa Δb = + + V l a b 3p (1 − 2σ ) = − Y Sabemos nosotros que el módulo de compresibilidad es B=− - Debido a la deformación de a: Δl 2 Δa p ⎛ p⎞ = −σ = −σ ⎜ − ⎟ = σ l a Y ⎝ Y⎠ p ΔV V Luego: B= - Debido a la deformación de b: Δl 3 Δb p ⎛ p⎞ = −σ = −σ ⎜ − ⎟ = σ l b Y ⎝ Y⎠ Y 3(1 − 2σ ) Expresión que nos relaciona el módulo de Compresibilidad, el módulo de Young y la relación de Poisson Deformación total Δl Δl 1 Δl 2 Δl 3 = + + l l l l p = − (1 − 2σ ) Y Ejemplo 49. , sus unidades son m Δl Y= F A =S Δl δ l TABLA I Módulo de elasticidad o módulo de Young. ELASTICIDAD FISICA 2 EJERCICIOS RESUELTOS MUY FACIL PASO A PASO | PROBLEMA 03 EmCivil 1.14K subscribers Subscribe 12K views 2 years ago E n este video te enseñare … EJERCICIOS-ELASTICIDAD E L A S T I C I D A D. 1. Una cuerda de Nylon se alarga 1,2 m sometida al peso de 80 kg de un andinista. lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán ⎡⎛ α 2 ⎞ ⎤ Mg ⎟⎟ − 1⎥YA = ⇒ ⎢⎜⎜1 + 2 ⎠ ⎦ 2α ⎣⎝ ⇒ α2 2 YA = Mg Mg ⇒ α3 = 2α YA Finalmente α =3 Mg YA Ejemplo 4. 9. (La presión manométrica es la diferencia entre la presión real en el interior del depósito y la de la atmósfera exterior). d (Δh) = ρg 4 x 2 ydy 3Y 4 x 2 = 2 2 ρg 3Y ydy Integrando desde y = 0 hasta y = h h Δh = ∫ 0 ρg 3Y ydy = ρg y 2 3Y 2 Como el Peso total es Δh = h 0 ρgAh 3 1 ρgh 2 = 2 3Y , obtenemos: 1 (Peso total)h 2 Y (Area base) Ejemplo 27. Solución. Un cubo de acero de 5 cm de arista se halla sometido a 4 fuerzas cortantes, de 1200 kg, cada una, aplicadas en sentidos opuestos sobre caras opuestas. El número de deformaciones elásticas en un material es limitado ya que aquí los átomos del material son desplazados de su posición original, pero no hasta el extremo de que tomen nuevas posiciones fijas. CURSO 2 Bachillerato. Determine la deformación que sufre la atura de la barra por peso propio. La tensión deberá ser menor que la tensión de fluencia del material, de ahí que el límite elástico tenga que ser alto, ya que si el arco se deforma plásticamente, su deformación es irreversible y por lo tanto, no estará tensionando los dientes para corregir su posición transversal se convierte en un paralelogramo. Viga horizontal sostenida mediante un tirante. 22. Determine la deformación debido a la fuerza F, sin considerar el peso. T l - P l - W 2 l = 0. Datos: S = esfuerzo, Y = módulo de Young, σ = módulo de Poisson. 3. Civil, Ing. Respuesta. Una cierta fuerza se requiere para romper un alambre. Tomemos un elemento diferencial dy tal como se muestra en la figura. ⎛ Δl ⎞ Fha = ⎜ ⎟ Aha Yha y ⎝ l ⎠ ⎛ Δl ⎞ ⎛ Δl ⎞ A Fh = ⎜ ⎟ AhYh = = ⎜ ⎟ ha 10Yha ⎝ l ⎠ 20 ⎝ l ⎠ F De allí deducimos que ha = 2 . Consideramos ahora un volumen de material V sujeto a un esfuerzo unitario p 0 (por ejemplo la presión atmosférica) sobre toda la superficie. l 11 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán Ejemplo 20. Nylon 6. Cálculo de R2: El elemento diferencial dm se mueve aceleración a debido a la fuerza (R1 –R2) Y la fuerza que lo estira es R2. c) El módulo de Poisson de la mayoría de metales es aprox. b) ¿Cuál es la densidad del agua del mar a esta profundidad si la densidad en la superficie vale 1,04 g/cm3? Encontrar cuanto se comprime el cono de altura h y base de área A debido a su propio peso. Por equilibrio estático, ∑τo= 0. Publicadas por Alex.Z el jueves, … En este ensayo la muestra se deforma usualmente hasta la fractura incrementando gradualmente una tensión que se aplica uniaxialmente a lo largo del eje longitudinal de la muestra. Una cuerda de nylon se alarga 1.10 m sometida al peso de una alpinista de 65.0 kg. Determinación de la relación entre el módulo de rigidez, el módulo de Young y el módulo de Poisson. 9525 N θ = 0,00422º 32. a) Desarrollar una expresión para la constante de torsión de un cilindro hueco en función de su diámetro interno Ro, su radio externo R1, su longitud l y su módulo de corte G. b) ¿Cuál deberá ser el radio de un cilindro macizo de la misma longitud y material y que posee la misma constante de torsión? Problemas Resueltos de Elasticidad … a) Hallar la deformación longitudinal unitaria cuando el plano es horizontal. Una barra de masa M, módulo Y, sección A y altura L está sobre el piso. 4. Para calcular la aceleración de la barra aplicamos: ∑F Deformación de 2. Bajo la acción de la fuerza de compresión F, el tubo disminuye en Fl / AY . Por tanto, nos queda, Δl F F F = +σ = (1 + σ ) l YA YA YA Por otra parte, la deformación en la dirección vertical corresponde a las deformaciones causadas por un lado por la fuerza de compresión en la dirección vertical y por otro por la tracción en la dirección horizontal. Las ligas diminutas para ortodoncia 4. Una tira de este aluminio de 76 cm de larga, 2,5 cm de ancha y 0,8 mm de gruesa se estira gradualmente hasta que la tensión de tracción alcanza su límite permisible. Cuál debe ser el diámetro máximo de un cable de acero que se quiere emplear en una grúa diseñada para levantar un … Se jala cobre un piso liso de la manera como se muestra en la figura. El módulo de Young del acero es dos veces mayor que el del cobre. … Poniendo estos m Δρ ΔV datos obtenemos que = = 0,027 %. Comenzando con la deformación la los efectos de las fuerzas en los extremos de la barra. Vista previa parcial del texto. El sólido mostrado de modulo elástico Y tiene altura H y bases circulares de radios R y 2R Solución. La elasticidad de una banda de goma de longitud Lo es tal que una fuerza F aplicada a cada extremo produce una deformación longitudinal de una unidad. El elemento diferencial se comprime: Para determinar cuánto se comprime el sólido d (ΔH ) = tomamos un elemento diferencial dy y vemos cuanto Pdy 2 , A = π (R + x ) YA se comprime por efecto del peso de la parte tronco de cono que está sobre él (la parte de altura y en el dibujo). Nota: En R3 ya está considerado el peso de la masa puntual M colocada en el extremo inferior de la barra. Basándonos en la ley de Hooke, escribimos T1 T2 = 7 20 Donde el subíndice 1 se refiere al aluminio y el 2 al acero. Por elasticidad volumétrica tenemos: ΔV Δp = − B V 9 2 2 Ejemplo 47. Si observamos la figura, vemos que los resultados de los esfuerzos tangenciales equivalen a los producidos por las fuerzas H que producen, por una parte, un esfuerzo de tracción sobre el plano C y un esfuerzo de compresión sobre el plano B. δ h = 2ΔDC 2ΔDC = o DC sen 45 DC En estas condiciones, sí sustituimos en (1) este último resultado nos queda φ = 2(1 + σ ) H YA Esta ecuación, si tenemos en cuenta que φ es la deformación tangencial y la comparamos con la ecuación G = S φ = H A φ 27 Downloaded by Edwin Charca ([email protected]) , nos permite obtener lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán Y G= 2(1 + σ ) Expresión que relaciona el módulo de rigidez con el módulo de Young y con el módulo de Poisson FUERZA ELASTICA Y ENERGIA ELASTICA. ¿Cuál será el esfuerzo máximo? 2 Ejemplo 23. F S esfuerzo = A= t deformación δ φ h F (1200(9,8)) St = = = 4,704 x106 N/m2 2 A (0,05) El módulo de cizalladura o de rigidez G es una propiedad mecánica de cada material G= Siendo pequeños los ángulos de desplazamiento podemos escribir Deformación = δ h Solución. b) Lf = 3,0009 m 11. 12. Vista previa parcial del texto. Respuesta. 2º de Bachillerato Ejercicios resueltos de "Física Relativista" 09. La energía necesaria para estirar una cantidad x una muestra de material de constante de rigidez k es Energía = 1 ∫ fdx = ∫ kxdx = 2 kx 2 o en función A = 10 -6 m 2 , Y = 2 × 10 2 N/m 2 W = trabajo realizado por la fuerza F = kx en alargar el alambre una longitud x. W= 1 2 F kx , con F = kx ⇒ x = k 2 2 1 ⎛F⎞ 1 F2 W = k⎜ ⎟ = 2 ⎝k⎠ 2 k YA Para un alambre k = l de F Energía = Y = 2 x 1011 N/m2, A = área de la sección transversal = 10 -6m2 Solución. A profundidades oceánicas de unos 10 km la presión se eleva a 1 kilobar, aproximadamente. La suma Fl / AaYa + Fl / AcYc es igual al desplazamiento de la tuerca a lo largo del perno: Fl / AaYa + Fl / AcYc = h , de donde: Solución. T = P + 2 W (1) Geométricamente, … Consideremos una capa diferencial cilíndrica de material concéntrica con el eje, de radio interior r y de espesor dr, como se muestra en la figura. l ⎝ AaYa + AcYc ⎠ Ejemplo 9. PROBLEMAS RESUELTOS DE FÍSICA I (Mecánica - Movimiento Ondulatorio – Calor) ATILIO DEL C. FABIAN ISBN Nº 950-746-121-3 Editor Responsable: Secretaría de Ciencia y … b) ¿Cuál es el cambio en la altura ΔH = H − H ' del paralelepípedo? Respuesta. κ Ejemplo 12. b) El paralelepípedo esta sujeto a esfuerzo por cuatro caras, como se muestra en la figura siguiente: c) Para la mayoría de metales con un valor de aproximado a 0,3: σ ΔV S S = [1 − 2(0,3)] = 0,4 V Y Y Para el corcho, con un valor de σ aproximado a 0,0: Sea S el esfuerzo sobre cada una de las caras laterales. 48 comentarios Por último, varios ejercicios también con sus soluciones y explicados … Energía de deformación. All rights reserved. Respuesta. Gráfica típica tensión vs deformación DEFORMACIÓN ELÁSTICA Y PLÁSTICA 1 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán Cuando una pieza se somete a una fuerza de tensión uniaxial, se produce una deformación del material. Se tiene una columna de largo L, sección transversal A, densidad ρ, módulo de elasticidad Y. La variación relativa de volumen que se observa es de 7,25×10-6 (∆V/Vo). Respuesta. SOLUCIN. 32 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán 36. El elemento diferencial dy soporta el peso P ' de la porción de barra de longitud y que está sobre él. Para encontrar la tensión del hilo. Ejercicios Resueltos de Números Cuánticos para Quimica de Bachillerato (28.841) Ejercicios Resueltos de Cinemática Variados, de MRU y MRUA, para Física y … Calcule la deformación por cizalladura. Problema 7.6.1. ¿Cuál es el valor de ΔV/V? Si los cables inicialmente tienen igual longitud y la viga finalmente está horizontal, ambos cables han experimentado el mismo alargamiento: Como Δl = Fl , YA lT1 lT2 = de aquí Y1 A Y2 A mg = 250 N y Fa = 2Fc = 500 N. 4 Ejemplo 6. ELASTICIDAD PROBLEMAS RESUELTOS Premisa de Trabajo: En la resolucin de cada ejercicio debe quedar especificado: el tipo de esfuerzo y deformacin producidos en el sistema … Una pirámide truncada de bases cuadradas de lados ”a” y “2a” respectivamente de altura h y modulo elástico Y se somete en la dirección axial a una fuerza de compresión P, Determine la deformación que sufre la altura por acción de la fuerza P. Solución. Tomemos un elemento diferencial dy tal como se muestra en la figura. 0,0 y el del caucho cercano a 0,5. Consolidado ΔV ⎛ Δa ⎞ ⎛ Δb ⎞ ⎛ Δc ⎞ =⎜ ⎟total + ⎜ ⎟total + ⎜ ⎟total V ⎝ a ⎠ ⎝ b ⎠ ⎝ c ⎠ 6S = 3S (4σ ) − 6 S = (2σ − 1) Y Y Y DEFORMACIÓN POR CIZALLADURA O CORTE. Debido a la compresión ocasionada por la fuerza F: F ΔL ΔL Δa Δb y como =− = = −σ L YA a b L Δa Δb F Obtenemos: = =σ a b YA ΔV ΔL Δa Δb Como = + + V L a b Reemplazando Donde σ es otra constante del material conocida como el módulo de Poisson. Volver a resolver el Problema anterior, teniendo en cuenta esta el peso del cable cuando tiene su longitud máxima de 150 m. La densidad del material del cable es 7,8 x 103 kg /m3. ¿Cuál debe ser el diámetro mínimo de un cable de acero que se quiere emplear en una grúa diseñada para levantar un peso máximo de 10000 kg. Calcular a) su variación de longitud, b) su variación de volumen, c) el trabajo realizado y d) la ganancia en la densidad de energía elástica. El sólido de la figura está sometido a los esfuerzos de compresión y tracción mostrados en las direcciones x y z, respectivamente. La presión que soporta, cada cara, en el primer caso, será: tan ϕ ≈ ϕ = 1 F 1 (103 )(9,8) = G A 3 × 1011 x10−1 10− 2 = 3,27x10-5 rad 2 10 N/m Solución. Página 1 de 16. Respuesta. El material del cable tiene un límite elástico de 2,5 x 108 Pa y para este material Y = 2 x 1010 Pa. El resorte de la ropa interior 10. a) F = 6,75 x 107 Pa, b) a = 1,32 m/s2, A 31 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán c) Δy = 85,3 m. 27. ¿A qué velocidad de rotación se romperá la barra? Sugerencia: Calcule la deformación de una porción diferencial del hemisferio formada por un disco delgado paralelo al piso. Una cuerda de nylon se alarga 1.10 m sometida al peso de una alpinista de 65.0 kg. PROPIEDADES MECÁNICAS DE LOS MATERIALES Muchos materiales cuando están en servicio están sujetos a fuerzas o cargas. Solución. De las ecuaciones de equilibrio. Calcule densidad del agua del océano a una profundidad en que la presión es de 3430 N/cm2. Por lo tanto su deformación será un diferencial de ΔL esto es d (ΔL ) : L R2 dx y ΔL = ∫ d ( ΔL) 0 YA Como R2 = m' a , m' = ρAx y F F , tenemos: a= = m ρAL ⎛ F ⎞ x ⎟⎟ = F R2 = (ρAx )⎜⎜ L ⎝ ρAL ⎠ d (ΔL) = = F + 2F d (ΔL ) = F ΔL = AY = 2F ρAL x L F ⎛ 2x ⎞ ⎜1 + ⎟dx AY ⎝ L⎠ L ∫ L 0 x2 ⎞ F ⎛ ⎛ 2x ⎞ ⎜⎜ x + ⎟⎟ ⎜1 + ⎟dx = L⎠ L ⎠0 AY ⎝ ⎝ 2 FL AY Segundo método. Si la barra se jala hacia arriba con una fuerza F (F > mg). Address: Copyright © 2023 VSIP.INFO. El paralelepípedo esta sujeto a esfuerzo por sus seis caras, como se muestra en la figura siguiente: longitud. 2senα Por la ley de Hooke deducimos que ⎛ Δl ⎞ T = ⎜ ⎟YA ⎝ l ⎠ Igualando: Mg ⎛ Δl ⎞ ⎜ ⎟YA = 2senα ⎝ l ⎠ De la figura siguiente: 8 × 9,8 F Mg = = A A 3,14 × 10 −6 N = 2,49 × 107 2 m Que no llega ni al límite inferior de elasticidad ni al de ruptura. Solución. … Designemos este alargamiento por Δl . ΔL = Ejemplo 18. 17. ΔL2 = 2 PL0 / 2 2 PL0 / 2 P = = YA FL0 F La mínima cantidad de trabajo que hará elevar ambos pesos del suelo es: Trabajo = Energía para estirar ΔL1 + Energía para estirar ΔL2 + Energía para elevar un peso P la altura L1, el peso inferior no se levanta, solamente se despega del piso. 2. Por la ley de Hooke YA Δl F Δl (1) = ⇒ F= l YA l Pero para las fuerzas elásticas F = kΔl (2) Ejemplo 52. Respuesta. Durante la rotación del anillo, en éste surge una tensión T = mv2/2 π r .Para el anillo fino m =2πrSρ, donde S es la sección transversal del anillo. Un alambre de acero dulce de 4 m de largo y 1 mm de diámetro se pasa sobre una polea ligera, uniendo a sus extremos unos pesos de 30 y 40 kg. Aplicando la segunda ley de Newton: ∑ F = ma ⇒ 3F − 7 F = (m1 + m2 + m3 )a ⇒ − 4 F = 10 ρLAa 0,4 F ⇒ a=− ρLA El conjunto se mueve hacia la izquierda. Se romperá cuando Fc = (30x9,8) x100 = 29400 N. Llamando dm a un elemento de masa situado a la distancia x del eje de giro, será: dFc = dmω x = ρdVω x = ρω Axdx Integrando: 0,5 1 Fc = ∫ ρω 2 Axdx = ρω 2 Ax 2 0 2 1 = (7800)ω 2 100 × 10− 6 0,52 2 Luego: 1 (7800)ω 2 100 × 10− 6 0,52 = 29400 2 2 ( ( 0 Donde l es la longitud de]a barra, ω es la velocidad angular de la rotación; r, la distancia que hay desde el elemento de masa dm hasta el eje de rotación. lOMoARcPSD|3802846 DIFERENCIA ENTRE LOS CUERPOS ELASTICOS Y LOS INELASTICOS. Ejemplo 26. Solución. F dy 2 πY ⎛ R ⎞ ⎜ R + x⎟ H ⎠ ⎝ FH 2 (H + x )−2 dy 2 πR Y H FH 2 −2 ΔH = ∫ ΔH = 2 ∫ (H + x ) dy πR Y 0 = −1 FH 2 ⎡ (H + x ) ⎤ = ⎢ ⎥ πR 2Y ⎣ − 1 ⎦ 0 FH 2 ⎡ 1 ⎤ FH = ΔH = 2 ⎢ ⎥ πR Y ⎣ 2 H ⎦ 2πR 2Y H 1 3 El peso que soporta es: Peso = ρg ( 4 x y ) el área de su base es: Ax = 4 x Deformaciones no uniformes por peso propio y área variable. Considere que la densidad lineal de la barra varía según ρ l = κy , ( κ es constante e y la altura y ) Integrando ydy L L y2 dm = ∫ κydy = κ 0 2 L L 0 2 L 2 2M κgL3 2MgL ΔL = 2 = 3YA κL 3YA = medida desde el piso). O sea: ΔL = ∫ d (ΔL) = x=L F ∫ YAL xdx x =0 De donde ΔL = 1 FL 2 YA P = mg = Alρg = 10 A 8 Es decir: l= F xdx , y YAL d (ΔL) = 10 8 A 10 8 =1143,6 m = Aρg 8930 x9,8 Ejemplo 13. Solución. ¡Descarga EJERCICIOS RESUELTOS DE ELASTICIDAD y más Ejercicios en PDF de Economía solo en Docsity! Determinar el alargamiento producido. 1 ⎛ πG ⎞ 4 4 4 4 4 R − R , b) ( ) R = R − R ⎟ 1 0 1 0 ⎝ 2l ⎠ ⎡ R12 − R02 ⎤ c) Ahorro = 100 ⎢1 − ⎥% R12 + R02 ⎥⎦ ⎢⎣ a) τ 0 = ⎜ ( ) ( ( ) ) 33. En cuanto a la deformación, se obtiene a partir de la expresión de la deformación de cizalla, que es: ⎛ − 0,00005V ⎞ Δp = −2,1 × 10 ⎜ ⎟ V ⎝ ⎠ 9 = 1,05 x105 N/m p= 9,8 × 105 ΔV p =− =− = −2,8 × 10 − 5 V B 3,5 × 1010 El módulo de compresibilidad del agua es 2,1 x 10 N/m Ejemplo 48. S= N F . Ejercicios Resueltos Eteres 2 Bachillerato PDF. Si se aplica la misma fuerza a la circunferencia de una varilla del mismo material pero que tiene una longitud de 80 cm y un diámetro de 2 cm, ¿cuál es el ángulo de torsión resultante? 67% (3) 67% found this document ... I= = = 1.92(mm 4 ) Encontramos el ángulo de giro sabiendo, que el modulo de 64 … La altura del hemisferio disminuye ΔR = 0,35 0,41 0,28 0,33 0,30 0,38 0,37 0,33 0,30 ρgR 2 Debido al peso propio Y DEFORMACION LATERAL MODULO DE POISSON Adicionalmente, cuando estiramos un bloque en una dirección éste se contrae en las dimensiones perpendiculares al estiramiento, la contracción de las caras laterales es en la misma proporción para el ancho (a) y el alto (h). B acero = 16 x 1010 N/m2 , B agua = 0,21 x 1010 N/m2, 1bar = 105 Pa Respuesta. φ= St 4,704 × 106 = = 0,588 x10-3 G 8 × 109 radianes 22 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán = 2,65 x 105 N Ejemplo 42. Módulo de elasticidad Y 1010 N/m2 Aluminio 6,8 Cobre 10,8 Oro 7,6 Hierro, fundido 7,8 Plomo 1,7 Nickel 20,6 Platino 16,7 Plata 7,4 Latón 4,6 Acero 20,0 Nombre Ejemplo 1. Suponiendo que la fuerza tensora media del cable actúa sobre la longitud total del cable l 0 , hallar el Respuesta. 2 38. Robert Hooke fue el primero en enunciar esta relación con su invento de un volante de resorte para un reloj. El módulo de Young del latón es 3,5x1010 Pa Módulo de rigidez G del latón es 1,7 x1010 N/m2 −2 −5 m2 . a) El esfuerzo de corte. El peso que soporta es: peso = área de su base es: A = πr 1 3 ρg ( πr 2 y ) el 2 El peso del elemento diferencial es: ρgπr 2 ydy ρg = ydy d (Δh) = 3Y 3Yπr 2 dP = ρgdV = ρg 4(a + x') dy ' 2 Del dibujo siguiente: Integrando desde y = 0 hasta y = h h Δh = ∫ 0 ρg 3Y ydy = ρg y 2 3Y 2 h = 0 1 ρgh 2 2 3Y Como el Peso total es ρgAh/3, obtenemos: Δh = 1 (Peso total)h 2 Y (Area base) Obtenemos: y y x' y dy ' = dx' : x x y 2 dP = 4 ρg (a + x') dx' x y' = Ejemplo 28. Un alambre de acero de 2m de longitud cuelga de un soporte horizontal rígido. a) Lf = 3,001 m. Sí está bien dimensionada. b) Determine el módulo de Young y la constante de Poisson. alargamiento resultante. , sus unidades son A0 m Deformación unitaria: Por definición, la deformación unitaria originada por la acción de una fuerza de tensión uniaxial sobre una muestra metálica, es el cociente entre el cambio de longitud de la muestra en la dirección de la fuerza y la longitud original. 1020,4 kg/cm2 = 1 020,4x9,8 N/cm2 =108 N/m2; ρ = 8930 kg/m3. Determínese el esfuerzo, la deformación y el alargamiento del cable. DESCARGAR | ABRIR PDF. Primer método. Cuando se dejan en libertad, ¿en cuánto cambiará la longitud del alambre? Una fuerza de la magnitud F se ejerce en el sacador, el esfuerzo de corte (fuerza por unidad de área) a F ⇒ A F = S . Ejemplo 7. Calcule los principales momentos de inercia para los cuerpos rígidos mostrados en la siguiente figura: Saltar al contenido. 29. El cono esta hecho de un material de densidad ρ y módulo de elasticidad Y. Tomemos un elemento diferencial dy, tal como de indica en la figura Solución. b) Determinar el módulo de Poisson sabiendo que el módulo de Young del cobre es 120×109 Pa. Solución. Solución. 6. Determine la deformación que sufre la altura de la Gran pirámide de Keops en Egipto debido a su propio peso, sabiendo que posee una altura de 147 m, su base es cuadrada de lado 230 m y que fue construida con bloques de piedra caliza y granito con módulo de Young = 35 x 109 N/m2 y densidad = 2400 kg / m3. Si este cable es reemplazado por dos cables de acero cada uno con la misma longitud que el original pero con la mitad de su diámetro, compare el alargamiento de estos cables con el del cable original. Una estatua se encuentra soldada a un pedestal de latón, que se muestra en la figura. G Acero al carbono = 8 x109 N/m2 = tan φ ≈ φ Consideremos solamente las fuerzas horizontales, estas producen una deformación φ , como se muestra en la figura F S esfuerzo G= = A= t deformación δ φ h φ= La ley de Hooke para la deformación por cizalladura se puede escribirla de modo siguiente: St 4,704 × 106 = = 0,588 x10-3 G 8 × 109 radianes S t = Gφ El módulo de cizalladura G es característico de cada material Módulo de Nombre rigidez G 1010 N/m2 Aluminio 2,5 Cobre 4,3 Oro 3,5 Hierro, fundido 3,2 Plomo 0,6 Nickel 7,4 Acero 7,5 Latón 1,7 La cara que se muestra queda como un rombo ⎛π ⎞ ⎛π ⎞ −φ ⎟ y ⎜ +φ ⎟ ⎝2 ⎠ ⎝2 ⎠ con ángulos ⎜ Consideremos ahora solamente las fuerzas verticales, estas producen una deformación también φ , como se muestra en la figura Ejemplo 39. Hállese la longitud que ha de tener un hilo de alambre, de densidad 8,93 y módulo de rotura 1020,4 kg/cm2 para que se rompa por su propio peso. A = (3,45 × 10 8 )(49,06 × 10 −5 ) través del borde es S = = 1,69 x 105 N. La hoja de acero se corta por cizalladura cuando el esfuerzo llega a ser igual 3,45 x 108 N/m2, es decir, cuando F = 1,69 x 105 N. Esta es la fuerza de 1,69 x 105 N, equivalente a 17,3 toneladas es requerida para perforar el agujero de 2,5 cm de diámetro El sacador y los dados son operados por una máquina conocida como prensa; en este caso uno tendría que utilizar una prensa con una capacidad de 20 toneladas o más. La deformación por fuerza es debido a R2: y = ma y 5Mg − Mg − Mg = 2Ma ⇒ a = R 2L FL ΔL2 = 2 = 9,2 YA YA 3 g 2 La deformación por desplazamiento es debido a ser jalado por la fuerza R1 - R2 = 5,2 F – 4,6 F = 0,6 F ΔL' 2 = 0,6 F 2 L FL = 0,6 2YA YA Deformación total de 2: FL FL + 0,6 YA YA FL = 9,8 YA ΔL2Total = 9,2 Deformación de 1. En el sistema mostrado en la figura, calcular cuánto desciende el extremo B de la barra indeformable y de peso despreciable, cuando se le coloca un peso de 10 Ton. Un alambre de cobre de 31 cm de largo y 0,5 mm de diámetro está unido a un alambre de latón estirado de 108 cm de largo y 1 mm de diámetro. Sea S el esfuerzo sobre la cara superior e inferior y S’ el esfuerzo sobre cada una de las caras laterales. Cuando la fuerza F que actúa sobre el cuerpo es paralela a una de las caras mientras que la otra cara permanece fija, se presenta otro tipo de deformación denominada de cizalladura en el que no hay cambio de volumen pero si de forma. 15. Energía para estirar una banda elástica es U = 1 2 kx 2 FL0 En este caso k = YA = = 2 F , y x = ΔL1 , Solución. Además en ingeniería muchas cargas son torsionales en lugar de sólo cizalladura. dF = (dm )a c = (dm )ω 2 r dm = ρAdr ' dF = (ρAdr ')ω 2 r ' = ρAω 2 r ' dr ' Integrando: l l r r F = ∫ ρAω 2 r ' dr ' = ρAω 2 ∫ rdr 1 F = ρAω 2 (l 2 − r 2 ) 2 Parte 2: Cálculo del alargamiento El alargamiento del elemento dr es: d (Δl ) = Fdr YA Y el alargamiento total será: Fdr ρAω 2 l 2 ( = l − r 2 )dr ∫ r YA r 2YA 2 l3 1 ρω 2 l 3 ρω 3 Δl = (l - ) = 3 Y 2Y 3 Δl = ∫ Solución. ¿Qué incremento de presión se requiere para disminuir el volumen de un metro cúbico de agua en un 0,005 por ciento? ¿Qué clase de elasticidad se presenta en un puente colgante? Como valores aproximados para algunos materiales se puede tomar: 0,28 para hierro y acero, 0,5 para caucho y 0,25 para vidrio. Un cable de acero de 2 m de largo tiene una sección transversal de 0,3 cm2. ¿Cuál es la mínima cantidad de trabajo que hará elevar ambos pesos del suelo? Una vez que han chocado ambas ¿siempre se moverá … Un ascensor es suspendido por un cable de acero. ENSAYO DE TENSIÓN Y DIAGRAMA DE ESFUERZO – DEFORMACIÓN. Desplazamiento lateral de la cara superior del pedestal de 0,25mm. 6 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán Solución. Pero como por la ley = ρ1 V1 l Δl p n , tendremos que en definitiva = de Hooke l Y Δρ p n (1 − 2σ ) . Cuando el esfuerzo a presión se incrementa a p = p 0 + Δp y el volumen sufre una disminución ΔV , la deformación unitaria es δ = − ΔV V F El esfuerzo es = Δp . 4.- Sobre la superficie del agua de un recipiente se vierte una capa de gasolina de 3cm de altura, en la cual se, lOMoARcPSD|3802846 Elasticidad Fisica 2 ejercicios resuelto Fiscaal recht (UC Leuven-Limburg) StuDocu is not sponsored or endorsed by any college or university Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán CAPÍTULO 1. En nuestra página web encontrarás todos los ejercicios resueltos y apuntes de Física y Química 2 ESO en PDF. 30. b) ¿Se romperá el … En términos generales, encontró que una fuerza que actúa sobre un resorte produce un alargamiento o elongación que es directamente proporcional a la magnitud de la fuerza. El comportamiento mecánico de un material es el reflejo de la relación entre su respuesta o deformación ante una fuerza o carga aplicada. F= GA x h El trabajo para deformar un dx es W =∫ x = Δx x =0 GA xdx h 28 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad W= Hugo Medina Guzmán Usando los diagramas del cuerpo libre mostrados en las figuras tenemos: Para la parte de la liga L1: tenemos: 1 GA (Δx )2 = 1 FΔx 2 h 2 La densidad de energía es ΔL1 = W 1⎛F ⎞ 1 = ⎜ ⎟Δx = S t Δx A 2⎝ A⎠ 2 PL0 / 2 PL0 / 2 P = = YA FL0 2F Para la parte de la liga L2, tenemos: Ejemplo 53. ¿Está bien dimensionada la columna si el límite elástico de la fundición gris es 260 MPa? Los pesos se encuentran sujetos, de modo que el conjunto se encuentra en equilibrio estático. Una barra homogénea de cobre de 1 m de longitud gira uniformemente alrededor de un eje vertical que pasa por uno de sus extremos. Deformación por cizalladura Ya hemos estudiado el módulo de elasticidad Y de un material, es decir, la respuesta del material Solución. La balanza de torsión de la figura se compone de una barra de 40 cm con bolas de plomo de 2 cm en cada extremo. ¿El concreto necesita mayor refuerzo bajo compresión o bajo tensión? ¿En un eje de dirección automotriz? Para esto tomamos un elemento diferencial de altura dy’ y lo integramos desde x = 0 hasta x = x’. θ = 0,1º 31. La fuerza sobre cada uno de los tres sectores se indica en las figura a continuación El elemento diferencial es estirado por la fuerza R2. Δl mω 2 R = l AY 26. d) ¿Cuál es la energía potencial adquirida por la barra? EJERCICIOS RESUELTOS DE ELASTICIDAD - FÍSICA 2 - UNIVERSIDAD - YouTube 0:00 / 4:25 EJERCICIOS RESUELTOS DE ELASTICIDAD - FÍSICA 2 - UNIVERSIDAD 3,609 views … Monday, December 6, 2021 2:16:08 PM Ejercicios Resueltos De Elasticidad Fisica Pdf. Una carga de 100 kg está colgada de un alambre de acero de 1 m de longitud y 1 mm de radio. ¿En tacos de caucho? Entre dos columnas fue tendido un alambre de longitud 2 l . Fh De este modo, 2/3 del peso recae sobre el hormigón armado y 1/3, sobre el hierro. En cada extremo del hilo compuesto se aplica una fuerza de tracción de 9000 N. Si la deformación resultante es la misma en el acero y en el cobre, ¿cuál es la fuerza que soporta el núcleo de acero? Ensayo tensión – deformación Sobre un papel de registro, se consignan los datos de la fuerza (carga) aplicada a la muestra que está siendo ensayada así como la deformación que se puede obtener a partir de la señal de un extensómetro. La deformación del lado a es: Δa S' S' S = − +σ +σ (1) a Y Y Y Ejemplo 37. Solución. − 2 S 2(3B + S ) b) Demostrar que a partir de esta ecuación se sigue que el coeficiente de Poisson debe estar comprendido entre -1 y 1 . 29 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán b) Con la misma presión, ¿cuánto peso podrían soportar 2 sandalias planas cada una con un área de 200 cm2? Respuesta. Un hilo delgado de longitud l , módulo de Young Y y área de la sección recta A tiene unido a su extremo una masa pesada m. Si la masa está girando en una circunferencia horizontal de radio R con velocidad angular ω, ¿cuál es la deformación del hilo? 2 × 29400 ω = = 301538 , o sea 1950 × 10− 4 ω = 301538 = 549 rad/s . Se pregunta: a) ¿Hemos rebasado el límite de elasticidad? p = 3430 N/cm2 = 3,430 x107 N/m2, Δp = 3,430 x107– 1,013 x105 ≈ 3,430 x107 N/m2 RELACION ENTRE CONSTANTES ELASTICAS. Un cable de acero de 2 m de largo tiene una sección transversal de 0,3 cm2. El ejercicio se reduce a calcular si la disminución del precio, con la elasticidad de la demanda que nos dan, producirá o no el aumento de las ventas desde 30 a 36, es decir un aumento del 20% … W W a ⇒ 2W − 0,6W = a g g ⇒ a = 1,4 g El diagrama del cuerpo libre Cálculo de R2: Deformación de la barra por 5Mg: x W x a⇒ sen37º = L g L x 0,6 x W x + R2 = W 1,4 g = 2W L L g L El elemento diferencial se deforma dΔL : R dx 2W dΔL = 2 2 = 3 xdx YL YL R2 − W 1 5MgL 5MgL ΔL1 = = 2 YA 2YA Deformación de la barra por R3: 1 5MgL 5MgL = 2 2YA 4YA Deformación total: ΔL = ΔL1 + ΔL2 ΔL2 = 5MgL 5MgL + 2YA 4YA 15MgL = 4YA ΔL = Para hallar ΔL integramos desde x = 0 hasta x = L. ΔL = ∫ dΔL = 2W YL3 ∫ L 0 xdx = W YL La deformación es: Aquí no se considera el efecto del peso propio por separado, porque en el cálculo de R2 ya está considerado. módulo de elasticidad Y. Solución. Por equilibrio estático, ∑ τo = 0 Tl - Pl - W2l = 0 T - P -2W = 0 T = P + 2W(1) Geométricamente, considerando que el giro que se produce es pequeño, podemos escribir: Si la cuerda tiene 50 m de largo y 7 mm de diámetro, ¿qué módulo de Young tiene el Nylon? ESFUERZO Y DEFORMACIÓN UNITARIA. Aplicando la segunda ley de Newton: ∑ F = ma Solución. Demostrar que cuando se somete un cuerpo elástico a una tensión de corte pura que no supera el límite elástico de corte para el material, la densidad de energía elástica del cuerpo es igual a la mitad del producto de la tensión de corte por la deformación de corte. Solución. ¿Cuál es el objeto del refuerzo de acero en una viga de concreto? Y las deformaciones de cada una de las dimensiones son: Dimensión l: ρ ⎛ ΔV ⎞ ⎛ Δp ⎞ ⎟ ⎟ ⎜1 − ⎜1 + V ⎠ ⎝ B ⎠ ⎝ 1024 = 1041 kg/m3 = ⎛ 3,430 × 107 ⎞ ⎟ ⎜⎜1 − 2,1 × 109 ⎟⎠ ⎝ Δl p =− l Y 25 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán Dimensión a: - Propia: p Δb1 =− b Y - Debido a la deformación de a: Δb2 Δa p ⎛ p⎞ = −σ = −σ ⎜ − ⎟ = σ b a Y ⎝ Y⎠ - Debido a la deformación de l: Δa p =− a Y Δb3 Δl p ⎛ p⎞ = −σ = −σ ⎜ − ⎟ = σ l b Y ⎝ Y⎠ Dimensión b: Deformación total Δb Δb1 Δb2 Δb3 = + + b b b b p = − (1 − 2σ ) Y Δb p =− b Y El cambio de volumen es: Pero, como la deformación de una dimensión lleva a la deformación de las otras dimensiones, tenemos. El módulo de compresibilidad del agua es 2,1 x 9 F (100)(9,8) = = 9,8 × 10 Pa A 0,12 Como el módulo volumétrico del aluminio es B = 3,5x 1010 N/m2: De donde: ΔV = - 2,8x 10-5 V = - 2,8x 10-5x 10-3 = - 2,8x 10-8 m3. Solución. Se pide cuál debe ser esta velocidad para que la barra se rompa por la tracción que origina la fuerza centrífuga, sabiendo que el material de que está hecha se rompe por tracción cuando se le carga con 30 kg por mm2. Determinar el máximo valor admisible de la velocidad lineal de rotación de un anillo fino de plomo, si la resistencia del plomo tiene el límite de rotura P =2000 N/cm2 y la densidad ρ = 11,3 g/cm3. en ese extremo. Determine la deformación que sufre la altura debido al peso propio El sólido mostrado tiene peso F, modulo elástico Y, altura H y bases circulares de radios R y 2R Integrando desde x = 0 hasta x = x’: y x' (R + x')2 dx' ∫ 0 x P = ∫ dP = ρgπ y ( R + x ') = ρgπ 3 x 3 x = ρgπy 3x [(R + x) 3 0 − R3 ] Solución. Se encuentra disponible para descargar y consultar online Fisica 2 Bachillerato Ejercicios Resueltos PDF para imprimir o ver online … La muestra se sostiene por sus extremos en la máquina por medio de soportes o mordazas que a su vez someten la muestra a tensión a una velocidad constante. Ejemplo 2. Deformación debido a la rotación Una barra de longitud l , área A, densidad ρ y módulo de Young Y gira con velocidad angular ω constante sobre una mesa horizontal sin fricción y pivotado en uno de sus extremos. Pretendemos analizar la relación entre los esfuerzos cortantes y los esfuerzos de compresión y de tracción. 6. Problemas Resueltos de Elasticidad - Fisica - Limite elastico, esfuerzo, material ductil, modulo de Young, Modulo de Elasticidad. El módulo de Young de A es 2,4×1011Pa y de B 1,2×1011 Pa. ¿En que punto de la varilla debe colgarse un peso P a fin de producir a) esfuerzos iguales en A y B? Datos: Densidad = ρ, gravedad = g, módulo de Young = Y Lado de la base menor = 2a; lado de la base mayor = 4a Altura del tronco de pirámide regular = H Integrando desde x = 0 hasta x = x’: P = ∫ dP = 4 ρg y x' 2 ( a + x') dx' ∫ x 0 y (a + x') = 4 ρg 3 x 3 x [ 0 4 ρgy (a + x )3 − a 3 = 3x ] El elemento diferencial se comprime: d (ΔH ) = Solución. Módulo de elasticidad volumétrico. Si la cuerd 25 0 136KB resuelto fisica < 23 4.- Sobre la superficie del agua de un recipiente se vierte una capa de gasolina de 3cm de altura, en la cual se 42 6 527KB Read more Author / Uploaded Ejercicios Resueltos Fisica Moderna yoquieroaprobar es, los contenidos tratados en esta unidad son 1 campo gravitatorio de la tierra 2 magnitudes fsicas que caracterizan el campo … Manteniendo el extremo superior fijo aplicamos un torque τ que gira al extremo inferior un ánguloθ. Módulo de Young = 12x1010 N/m2 Límite de elasticidad de 3x107 a 12x107 N/m2 Límite de ruptura de 20x107 a 50x107 N/m2 Solución. Respuesta. Nombre Aluminio Acero Solución. Un perno de acero se enrosca en un tubo de cobre como muestra la figura. El volumen de dicho alambre antes de estirarlo es V1 = πr 2 l y su volumen después de estirado es V2 = π (r − Δr ) (l + Δl ) Si el volumen no varió con el alargamiento, 2 tendremos que πr l = π (r − Δr ) (l + Δl ) . d (ΔL ) = R2 dx AY Cálculo de R2: R2 − F = m' a ⇒ R2 = F + m' a = F + ρAx El elemento diferencial dm se mueve con aceleración a debido a la fuerza (R1 –R2) Y la fuerza que lo estira es R2. Estiramiento debido al peso: ΔL p = 1 0,6WL 0,3W = 2 YL2 YL Debido a la aceleración centrípeta se tiene una fuerza: Estiramiento total: ΔL = 0,7 0,3W W + = YL YL YL Ejemplo 19. Distribuci¶ondeestedocumento 15 II Teor¶‡a, esquemas para la resoluci¶on de problemas y Hallar el valor del módulo de Poisson para el cual el volumen de un alambre no varía al alargarse. ¿Cuál es más elástico, caucho o acero? Fisica 2 Bachillerato Ejercicios Resueltos PDF. ¿Cuál es el alargamiento total de la barra? a) m1 = 2 ρLA , m2 = 4 ρLA y m3 = 2 ρLA Ejemplo 15. Destinado para preparar el curso, dejamos a los alumnos una recopilacion con explicaciones y todo detalle de problemas y … Una mujer distribuye su peso de 500 N igualmente sobre los tacones altos de sus zapatos. La deformación por cizalla, se define como la razón Δx/h, donde Δx es la distancia horizontal que se desplaza la cara sobre la que se aplica la fuerza y h la altura del cuerpo, tal como vemos en la figura. De un alambre de cobre de 1,5 m de longitud y 2 mm de diámetro se cuelga un peso de 8 kg. A la constante de proporcionalidad, podemos escribir la ley de Hooke en su forma general. StuDocu is not sponsored, E L A S T I C I D A D. 1. Hemos dejado para descargar o ver online Problemas y Ejercicios Eteres 2 Bachillerato Quimica en PDF con soluciones junto con … en Física. Una barra de hierro de 100 mm2 de sección y 50 cm de longitud gira alrededor de uno de sus extremos con una velocidad angular uniforme de ω radianes por segundo. ¿A qué es igual el trabajo de tracción del alambre? 6(a) Armadura WARREN soportando dos cargas T Y Fig. Comparando (1) y (2) vemos que k= AY (3) l Entonces 1 AY (Δl ) 2 (4) W = k (Δl ) = 2 2l Calculando la magnitud Δl por la fórmula (1) y 2 La fuerza que deforma por corte o cizalladura poniendo todos los datos numéricos en la ecuación (4) obtenemos definitivamente que W = 0,706 J. es Ejemplo 51. 2 c) La experiencia demuestra que las barras sometidas a fuerzas de tracción (valores positivos siempre aumentan de volumen, mientras que si se someten a fuerzas de compresión (valores negativos de F), siempre disminuyen de volumen ¿Apoya esta afirmación el hecho de que no existe ningún material para el cual σ≥ 1 ? Relación entre B, Y y σ m kg En la superficie ρ = = 1024 3 V m Cuando cambia el volumen a V ' = (V + ΔV ) , Muestra sometida a una presión uniforme. Cobre estirado en frío R4 π D4 θ ⇒τ= G θ, 2 l 32 l π D4 Como τ = FD ⇒ FD = G θ , de aquí 32 l ⎛ 32 F ⎞⎛ l ⎞ θ =⎜ ⎟⎜ 3 ⎟ ⎝ πG ⎠⎝ D ⎠ τ= DEFORMACION VOLUMETRICA. A un precio de 30 dólares la cantidad demandada de un determinado bien es de 300 unidades. Si el precio aumenta a 45 dólares la cantidad demandada disminuye a 225 unidades. Calcular el valor de la elasticidad- precio. Explicar de qué tipo de demanda se trata. Supóngase que el cable se comporta como una varilla con la misma área transversal. Download & View Problemas Resueltos Elasticidad as PDF for free. Una varilla metálica de 4 m de largo y sección 0,5 cm2 se estira 0,20 cm al someterse a una tensión de 5000 N. ¿Qué módulo de Young tiene el metal? El acero promedio requiere, típicamente, un esfuerzo de 3,45 x 108 N/m2 para la ruptura por cizalladura. Determinar cuánto se comprime el sólido homogéneo debido a su peso propio. Así cuando la fuerza cesa, los átomos vuelven a sus posiciones originales y el material adquiere su forma original. Vamos a considerar un elemento diferencial de área A = π r , altura 2 = dy ρg Y R ∫ 2 0 ( ) 2R 2 (R − y ) − y R 2 − y 2 3 3 dy (R − y )(R + y ) Donde r = ( R − y ) 2 ) 2 17 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad = Hugo Medina Guzmán Cobre Oro Hierro, fundido Plomo Nickel Platino Plata Latón ρg R ⎡ 2 R 2 ⎤ − y ⎥dy ⎢ ∫ 3Y 0 ⎣ (R + y ) ⎦ R ρg ⎡ y2 ⎤ ( ) = R R y 2 ln + − ⎥ ⎢ 3Y ⎣ 2 ⎦0 = 2 1 ⎞ 0,30 ρgR 2 ⎜ 2 ln 2 − ⎟ = 2⎠ 3Y ⎝ Y ρgR 2 ⎛ Ejemplo 31. especifican Las dos constantes Y y σ completamente las propiedades de un material homogéneo isotrópico. ∑ F = ma ⇒ 2W − Wsen37º = Segundo método. Abriendo los paréntesis y despreciando los cuadrados de las magnitudes Δr y Δl , obtenemos 2 2 ⎛ Δl ⎞ ⎟(1 − 2σ ) , .donde σ es el ⎝ l ⎠ que ΔV = V1 ⎜ módulo de Poisson. El área de la sección transversal de todos los alambres es igual. Solución. File Name: ejercicios resueltos de elasticidad fisica .zip Size: 2951Kb Published: 06.12.2021. En tales condiciones es necesario conocer las características del material para diseñar el instrumento donde va a usarse de tal forma que los esfuerzos a los que vaya a estar sometido no sean excesivos y el material no se fracture. b) ¿Cuáles son las variaciones relativas de la anchura y altura? l = 2 m , F1 = 5 × 9,8 N , F2 = 10 × 9,8 N 1 Fx 2 Si la sección transversal de la muestra es A y su longitud l entonces podemos escribir la ecuación como Reemplazando: W= Energía 1 Fx Energía 1 ⎛ F ⎞⎛ x ⎞ = ⎜ ⎟⎜ ⎟ o = Al 2 ⎝ A ⎠⎝ l ⎠ Al 2 Al 1 F2 2 YA l F 2l 2 AY 2 F12 l ( 5 × 9,8) (2) a) W1 = = 0,012 J = 2 AY 2 10 −6 2 × 1011 = Energía por unidad de volumen = 1 (Esfuerzo)(Deformación unitaria) 2 Esta es la energía necesaria para estirar o comprimir la muestra, teniendo en cuenta el módulo de Young y la energía por unidad de volumen, puede expresarse como Energía 1 (Esfuerzo) 2 = Y 2 Volumen ( b) W2 = ) F22 l (10 × 9,8)2 (2) = 0,048 J = 2 AY 2(10 −6 )2 × 1011 El incremento en energía almacenada es: ΔE = W2 − W1 = 0,048 – 0,012 = 0,036 J. Ejemplo 50. Los extremos de las barras 4 Downloaded by Edwin Charca ([email protected]) lOMoARcPSD|3802846 Elasticidad Hugo Medina Guzmán están ligados al peso y a los apoyos, los cuales son indeformables. CATEDRA DE FISICA I Ing. La densidad en la superficie es 1024 kg/m3. UNIVERSIDAD … b) el doble en diámetro y dé la misma longitud? Se tiene el paralelepípedo mostrado en la figura que encaja perfectamente en una caja rígida. El hombre lanza la bola plata con una fuerza de 12 N. La bola verde tiene una masa de 2 Kg y la bola plata tiene una masa de 4 Kg. = 0: R1 + R2 − W = 0 (1) Geométricamente, tiene que cumplirse que los alargamientos sean iguales: Δl 1 = Δl 2 Por elasticidad R1l 1 R2l 2 = ⇒ AY AY R1l 1 = R2 l 2 La barra es indeformable y de peso P. El tensor BC es de peso despreciable, área A y módulo de elasticidad Y. Solución. Si la cuerd 25 0 136KB resuelto fisica < 23 4.- … La fuerza tensora en un punto cualquiera del cable es evidentemente suma de la carga Fg y del peso de la parte del cable que está debajo de dicho punto. El esfuerzo de la ruptura del cobre rolado para la cizalladura es típicamente 1,5 x 108. Enunciado Aplicando las leyes de Kirchho , deduzca las expresiones de la carga y corriente durante la carga y descarga de un … En la parte de comportamiento elástico se cumple la Ley de Hooke.
Programación Anual 2022 Primaria, Se Puede Usar Rodillera Para La Artrosis, Como Sacarse Conejos Del Cuello, Ansiedad Y Redes Sociales Pdf, Oxapampa A Pozuzo Distancia, Ranking Nombramiento Docente 2023, Y Se Llama Peru Letra Y Acordes,
Programación Anual 2022 Primaria, Se Puede Usar Rodillera Para La Artrosis, Como Sacarse Conejos Del Cuello, Ansiedad Y Redes Sociales Pdf, Oxapampa A Pozuzo Distancia, Ranking Nombramiento Docente 2023, Y Se Llama Peru Letra Y Acordes,